Human and robot partners increasingly need to work together to perform tasks as a team. Robots designed for such collaboration must reason about how their task-completion strategies interplay with the behavior and skills of their human team members as they coordinate on achieving joint goals. Our goal in this work is to develop a computational framework for robot adaptation to human partners in human-robot team collaborations. We first present an algorithm for autonomously recognizing available task-completion strategies by observing human-human teams performing a collaborative task. By transforming team actions into low dimensional representations using hidden Markov models, we can identify strategies without prior knowledge. Robot policies are learned on each of the identified strategies to construct a Mixture-of-Experts model that adapts to the task strategies of unseen human partners. We evaluate our model on a collaborative cooking task using an Overcooked simulator. Results of an online user study with 125 participants demonstrate that our framework improves the task performance and collaborative fluency of human-agent teams, as compared to state of the art reinforcement learning methods.
translated by 谷歌翻译
为了与机器人合作,我们必须能够理解他们的决策。人类自然会通过类似于逆增强学习(IRL)的方式来推理其可观察到的行为,从而推断出其他代理商的信念和欲望。因此,机器人可以通过提供对人类学习者的IRL提供信息的示威来传达他们的信念和欲望。一项内容丰富的演示是,鉴于他们当前对机器人决策的理解,与学习者对机器人将要做的事情的期望有很大差异。但是,标准IRL并未对学习者的现有期望进行建模,因此不能执行这种反事实推理。我们建议将学习者对机器人决策的当前理解纳入我们的人类IRL模型中,以便机器人可以选择最大化人类理解的演示。我们还提出了一种新颖的措施,以估计人类在看不见环境中预测机器人行为的实例的难度。一项用户研究发现,我们的测试难度与人类绩效和信心息息相关。有趣的是,选择人类的信念和反事实时,选择示范会在易于测试中降低人类绩效,但在困难测试中提高了性能,从而提供了有关如何最好地利用此类模型的见解。
translated by 谷歌翻译
While prior work has established that the use of parallel data is conducive for cross-lingual learning, it is unclear if the improvements come from the data itself, or if it is the modeling of parallel interactions that matters. Exploring this, we examine the usage of unsupervised machine translation to generate synthetic parallel data, and compare it to supervised machine translation and gold parallel data. We find that even model generated parallel data can be useful for downstream tasks, in both a general setting (continued pretraining) as well as the task-specific setting (translate-train), although our best results are still obtained using real parallel data. Our findings suggest that existing multilingual models do not exploit the full potential of monolingual data, and prompt the community to reconsider the traditional categorization of cross-lingual learning approaches.
translated by 谷歌翻译
Logical reasoning of text is an important ability that requires understanding the information present in the text, their interconnections, and then reasoning through them to infer new conclusions. Prior works on improving the logical reasoning ability of language models require complex processing of training data (e.g., aligning symbolic knowledge to text), yielding task-specific data augmentation solutions that restrict the learning of general logical reasoning skills. In this work, we propose APOLLO, an adaptively pretrained language model that has improved logical reasoning abilities. We select a subset of Wikipedia, based on a set of logical inference keywords, for continued pretraining of a language model. We use two self-supervised loss functions: a modified masked language modeling loss where only specific parts-of-speech words, that would likely require more reasoning than basic language understanding, are masked, and a sentence-level classification loss that teaches the model to distinguish between entailment and contradiction types of sentences. The proposed training paradigm is both simple and independent of task formats. We demonstrate the effectiveness of APOLLO by comparing it with prior baselines on two logical reasoning datasets. APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
translated by 谷歌翻译
Autonomous vehicles are being deployed with a spectrum of capability, extending from driver assistance features for the highway in personal vehicles (SAE Level 2+) to fully autonomous fleet ride sharing services operating in complex city environments (SAE Level 4+). This spectrum of autonomy often operates in different physical environments with different degrees of assumed driver in-the-loop oversight and hence have very different system and subsystem requirements. At the heart of SAE Level 2 to 5 systems is localization and mapping, which ranges from road determination for feature geofencing or high-level routing, through lane determination for advanced driver assistance, to where-in-lane positioning for full vehicle control. We assess localization and mapping requirements for different levels of autonomy and supported features. This work provides a framework for system decomposition, including the level of redundancy needed to achieve the target level of safety. We examine several representative autonomous and assistance features and make recommendations on positioning requirements as well map georeferencing and information integrity.
translated by 谷歌翻译
Self-supervised monocular depth estimation has shown impressive results in static scenes. It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions and occlusions. Consequently, existing methods show poor accuracy in dynamic scenes, and the estimated depth map is blurred at object boundaries because they are usually occluded in other training views. In this paper, we propose SC-DepthV3 for addressing the challenges. Specifically, we introduce an external pretrained monocular depth estimation model for generating single-image depth prior, namely pseudo-depth, based on which we propose novel losses to boost self-supervised training. As a result, our model can predict sharp and accurate depth maps, even when training from monocular videos of highly-dynamic scenes. We demonstrate the significantly superior performance of our method over previous methods on six challenging datasets, and we provide detailed ablation studies for the proposed terms. Source code and data will be released at https://github.com/JiawangBian/sc_depth_pl
translated by 谷歌翻译
Systems for person re-identification (ReID) can achieve a high accuracy when trained on large fully-labeled image datasets. However, the domain shift typically associated with diverse operational capture conditions (e.g., camera viewpoints and lighting) may translate to a significant decline in performance. This paper focuses on unsupervised domain adaptation (UDA) for video-based ReID - a relevant scenario that is less explored in the literature. In this scenario, the ReID model must adapt to a complex target domain defined by a network of diverse video cameras based on tracklet information. State-of-art methods cluster unlabeled target data, yet domain shifts across target cameras (sub-domains) can lead to poor initialization of clustering methods that propagates noise across epochs, thus preventing the ReID model to accurately associate samples of same identity. In this paper, an UDA method is introduced for video person ReID that leverages knowledge on video tracklets, and on the distribution of frames captured over target cameras to improve the performance of CNN backbones trained using pseudo-labels. Our method relies on an adversarial approach, where a camera-discriminator network is introduced to extract discriminant camera-independent representations, facilitating the subsequent clustering. In addition, a weighted contrastive loss is proposed to leverage the confidence of clusters, and mitigate the risk of incorrect identity associations. Experimental results obtained on three challenging video-based person ReID datasets - PRID2011, iLIDS-VID, and MARS - indicate that our proposed method can outperform related state-of-the-art methods. Our code is available at: \url{https://github.com/dmekhazni/CAWCL-ReID}
translated by 谷歌翻译
事件传感是生物启发的飞行指导和控制系统中的主要组成部分。我们探讨了事件摄像机在腹侧着陆期间与表面进行时间接触(TTC)的用法。这是通过估计差异(逆TTC)的差异来实现的,即径向光流的速率,是从着陆期间产生的事件流。我们的核心贡献是针对基于事件的差异估计的一种新颖的对比度最大化公式,以及一种分支和结合算法,可准确地最大化对比度并找到最佳的差异值。进行GPU加速度以加快全球算法。另一个贡献是一个新的数据集,其中包含来自腹面着陆的真实事件流,该数据集用于测试和基准我们的方法。由于全局优化,与其他启发式差异估计器或基于事件的光流方法相比,我们的算法更有能力恢复真正的分歧。随着GPU加速,我们的方法还可以实现竞争性的运行时间。
translated by 谷歌翻译
大型语言模型(LLMS)最近在生成流利文本方面表现出了令人印象深刻的能力。 LLM还显示出一种令人震惊的倾向,倾向于再现社会偏见,例如性别与职业或种族或种族和犯罪行为之间的刻板印象。像种族和性别一样,道德是一个重要的社会变量。我们的道德偏见会影响我们如何接受他人及其论点。我预计LLM的明显道德能力将在其对人类社会环境的影响中发挥重要作用。这项工作调查了LLMS是否复制与政治团体相关的道德偏见,我称这是道德模仿的能力。我使用道德基础理论中的工具来衡量模型中的道德内容,在促使自由和保守的政治身份促使该模型产生的文本中,使用了道德基础理论中的工具来探讨GPT-3(175B参数语言模型)的这一假设。结果表明,大型语言模型确实是道德模仿。当带有政治身份的提示时,GPT-3产生了反映相应道德偏见的文本。道德模仿可能有助于通过道德重新建立社会群体之间的理解。令人担忧的是,它还可以加强两极分化的观点,加剧现有的社会挑战。我希望这项工作鼓励进一步调查道德模仿能力,包括如何利用它来实现社会善良并最大程度地降低其风险。
translated by 谷歌翻译
背景:机器学习(ML)系统依靠数据来做出预测,与传统软件系统(例如数据处理管道,服务管道和模型培训)相比,该系统具有许多添加的组件。现有关于软件维护的研究研究了针对不同类型的问题(例如绩效和安全问题)的问题报告需求和解决过程。但是,ML系统具有特定的故障类别,报告ML问题需要特定于域的信息。由于ML和传统软件工程系统之间的特征不同,我们不知道报告需求在多大程度上不同,并且这些差异在多大程度上影响了问题解决过程。目的:我们的目标是调查ML和非ML问题之间分辨率时间的分布以及某些ML问题的分配时间是否存在差异。我们进一步研究了ML问题和非ML问题的修复大小。方法:我们在GitHub的最新活动应用ML项目中提取问题报告,提取请求和代码文件,并使用自动方法过滤ML和非ML问题。我们使用已知的深度学习错误分类法手动标记这些问题。我们测量了受控样本上ML和非ML问题的解决方案的分辨率时间和大小,并比较每个类别的分布。
translated by 谷歌翻译